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1 Introduction

Sovereign debt crises are associated with significant costs and disruption to economic ac-
tivity. Such events are often preceded by rising interest rates and debt issuances, which
makes it increasingly difficult for countries to finance the higher debt service. At the
heart of the debate lies the question of whether debt crises are driven by changes in fun-
damentals (i.e., recessions) or by coordination failures among creditors. In this paper,
we develop a quantitative sovereign debt model with self-fulfilling debt crises, in which
interest rate spreads and debt issuance exhibit realistic dynamics even in the absence of
fluctuations in fundamentals. We explore the complementarity between the rollover risk
in Cole and Kehoe (2000) and the interest rate risk in Calvo (1988). The higher proba-
bility of a rollover crisis in the future leads to higher interest rates today, which in turn
increases the likelihood of a rollover crisis in the future and justifies the high interest rates.

The rollover risk in Cole and Kehoe (2000) is motivated by the fact that countries often
rely on new borrowing to finance current debt service. If creditors expect an imminent
default on the previously issued debt, the price of newly issued bonds is low, which in-
deed pushes the country to default on the maturing debt because it cannot raise enough
revenue. Models of rollover risk have been used to explain fast reversal in capital inflows
at the height of a debt crisis, such as December 1994 in Mexico or the summer of 2012 in
Europe.1 A crucial assumption in these models concerns the timing of actions, with the
borrower issuing new debt before deciding whether to default on previously issued debt.

In contrast, the interest rate risk in Calvo (1988) is motivated by the fact that higher inter-
est rates can by themselves lead to a buildup in debt service and leave countries at risk of
default. Models with this kind of interest rate multiplicity have gained renewed interest
recently in an effort to explain the episodes in which bond spreads increase slowly over
time, as in Europe starting from 2008.2 An important assumption in these models con-
cerns the type of actions the borrower can take. We assume the borrower decides on the
amount of revenue it needs to raise from bond markets. Therefore, the amount to be re-
paid in the future is market determined and subject to self-fulfilling crises.3 High interest
rates make default more likely, which in turn justifies the high interest rates.

1This source of multiplicity has been explored in Cole and Kehoe (1996), Conesa and Kehoe (2017),
Bocola and Dovis (2019), Aguiar et al. (2022), and Bianchi and Mondragon (2022).

2This source of multiplicity has been explored in Aguiar and Amador (2020), Lorenzoni and Werning
(2019), and Ayres et al. (2018, 2023).

3An alternative is to assume the borrower chooses the amount to be repaid in the future, as in Arellano
(2008), which leads to equilibrium uniqueness. See Ayres et al. (2018) and Lorenzoni and Werning (2019).
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The European debt crisis, however, was marked by both a gradual buildup in interest rate
spreads and eventually a fast reversal in capital inflows. Because it is challenging to build
a unified theory of the events of 2008-2012 using one of the traditional approaches to self-
fulfilling debt crises alone, without the need of further assumptions on income processes
or preferences, our paper proposes to combine them. We exploit a complementarity be-
tween the rollover and interest rate risks by adopting both the timing assumption in Cole
and Kehoe (2000) and the assumption on borrower actions in Calvo (1988). As a result,
we obtain a simple framework where the self-fulfilling buildup of interest rates pushes
the government endogenously into a rollover crisis zone and leaves it at the mercy of fur-
ther market sentiments. In such cases, interventions by a lender of last resort are capable
of ruling out the high spreads, making our framework consistent not only with the weak
correlation between spreads and fundamentals throughout the crisis, but also with the
interpretation that policy announcements by the European Central Bank in the summer
of 2012 were enough to lower spreads without any intervention in bond markets taking
place in practice.4

We begin by illustrating our core mechanism in a simple three-period model where the
borrower issues Calvo-type debt in the first period and faces a Cole-Kehoe-style rollover
risk in the second period. Without any income fluctuations and for a risk-neutral bor-
rower, we show analytically that this setup can produce interest rate multiplicity that is
generated by the rollover risk. If creditors expect a rollover crisis in the second period,
they will charge a higher interest rate on the debt issued in the first period. But this larger
debt payment in the second period may in turn push the borrower to default in case a
rollover crisis occurs, hence justifying the higher initial interest rate.

Guided by the results from our stylized three-period model, we proceed to test the com-
plementarity between the two notions of multiplicity in a more typical infinite-horizon
setup with one-period debt.5 We maintain the assumption of no income shocks; hence,
the only source of risk comes from the two types of “sunspot" variables that exogenously
drive the rollover and interest rate risk sentiments. We find that the model can generate
interesting dynamics of the simulated debt and bond spread, which stems from an in-
teraction between the two types of multiplicity. Specifically, every simulated path starts

4These were the main features used to support the view of an expectations-driven crisis in Europe,
similarly to the debt crisis in Mexico in 1994.

5As elaborated in the literature review section, while we limit the scope of this paper to the most natural
case of short-term debt, the main results extend to the version of our model with a moderate profile of long-
term debt.
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with a “slow-moving debt crisis," where the borrower’s debt accumulation is propelled
by the creditors’ coordination on the high interest rate (a bad Calvo sunspot). Then, faced
with high debt and a high interest rate burden, the borrower finds himself in a crisis
zone and remains vulnerable to a rollover crisis (a bad Cole-Kehoe sunspot), which ulti-
mately causes him to default. Alternatively, a temporary and unexpected intervention by
a lender of last resort has the power to bring the spread down to zero, but this does not
lead to a debt reduction and an exit from the crisis zone. We show that the model simu-
lations produce a realistic debt ratio and a high and volatile bond spread. A comparative
statics exercise reveals that we can obtain a host of different combinations of these salient
moments by varying the probability of a bad Calvo sunspot.

Finally, we augment the model with income shocks and show that the feedback loop
between both types of multiplicity amplifies the dynamics of debt crises relative to the
benchmark models that admit each one of them separately. In particular, the model with
both sources of multiplicity attains the high average spread, as in the pure Cole-Kehoe
setup, and simultaneously generates a high standard deviation of the spread. By con-
trast, the pure Cole-Kehoe variant of the model features a high average spread with zero
volatility, whereas the pure Calvo variant can produce positive combinations of the two
moments, but their magnitude is less than half as high as in the baseline. The presence of
income shocks also widens the interval of probabilities of a rollover crisis for which the
two sunspots interact, relative to the model that features non-fundamental shocks only.
Income shocks also allow for interesting dynamics of debt and spread that goes in both
directions (increases and reductions). As such, the addition of income shocks increases
the relevance of our core mechanism.

1.1 Literature review

This paper is closely related to the sovereign default literature with self-fulfilling debt
crises. The main two papers that lay foundations for our approach are Calvo (1988) and
Cole and Kehoe (2000). Our contribution is to show that a complementarity exists be-
tween them. In a closely related paper, Corsetti and Maeng (2020) also study a model with
both types of multiplicity to show that the two types of debt crises can arise in a unified
framework for different state variables. By contrast, our paper highlights a complemen-
tarity between the two modeling assumptions and studies the quantitative implications
of their interaction, in particular in a framework with no additional sources of uncertainty.
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Our results are also related to the recent papers that assume equilibrium multiplicity in
the spirit of Calvo – Lorenzoni and Werning (2019) and Ayres et al. (2018, 2023), among
others – as well as those based on the Cole-Kehoe timing – Conesa and Kehoe (2017), Bo-
cola and Dovis (2019), Stangebye (2020), Aguiar et al. (2022), and Bianchi and Mondragon
(2022), among others. Several of these papers also focus on equilibrium multiplicity in the
presence of long-term debt. Long-term bonds naturally limit the applicability of rollover
crises and open the door to other forms of multiplicity, as shown in Aguiar and Amador
(2020). For this reason, we focus on the case of one-period debt.6

Our paper contributes to our understanding of the forces at play during the European
debt crisis. Using models based on fundamentals, Paluszynski (2023) explains the gradual
development of that episode, while Paluszynski and Stefanidis (2023) show that frictions
in spending adjustment may explain why governments simultaneously increased their
external debt. The present paper achieves similar objectives in a model where the debt
crisis is self-fulfilling.

2 Multiplicity in a three-period model

This section presents a simple three-period environment to illustrate our core mechanism.
For simplicity, we present the derivation of our main result for a risk-neutral borrower. In
the quantitative section, we assume a risk-averse borrower.

The borrower receives deterministic endowment y in all three periods (t = 0, 1, 2). It
has zero initial debt and can issue one-period non-contingent bonds to competitive risk-
neutral lenders. The borrower is not committed to repay the debt. In the case of default,
he is permanently excluded from international financial markets and restricted to con-
sume yd < y. The risk-free gross interest rate is denoted by R∗. To induce borrowing, we
assume the borrower has a lower discount factor than the lenders, denoted by β.

As in Cole and Kehoe (2000), we assume the borrower chooses whether or not to default
on the previously issued debt after the new debt issuance takes place.7 In this setting,
lenders may not roll over the debt if the lack of new borrowing pushes the borrower to
default on the old debt, which characterizes the rollover risk. As in Eaton and Gersovitz

6While the main results extend to the version of our model with a moderate profile of long-term debt, a
comprehensive analysis of that variant is beyond the scope of this paper.

7We do not allow for randomization over the default decision.

5



(1981), we assume that when the bond auction takes place, the borrower moves first by
committing to the amount of resources he wishes to raise in the current period, denoted
by b. Lenders move next and set the gross interest rate R. These assumptions generate
the interest rate multiplicity, as in Calvo (1988).8 For a given b, a higher R increases the
probability of default because it increases the debt service. In turn, a higher probability of
default implies a higher R, as lenders must have an expected return equal to R∗ in equi-
librium.

We present and solve the problem backward. In period t = 2, the only choice for the
borrower is whether to repay the debt issued in the previous period, R2b2, or to default.
The borrower defaults if yd > y− R2b2 and repays otherwise.

It follows that in period t = 1, if the lenders roll over the debt, the interest rate is uniquely
determined. Let us define the threshold B̃2 ≡

(
y− yd) /R∗. For b2 ≤ B̃2, there is no

default and R2 must be equal to R∗. For b2 > B̃2, the borrower defaults for sure, so B̃2

becomes a borrowing limit.

If lenders do not roll over the debt in t = 1, the borrower defaults if

vd
1 ≡ (1 + β)yd > y− R1b1 + βy,

where R1b1 is the debt service on the debt issued in t = 0.9 A rollover crisis may happen
only if it pushes the country to default, so the borrower is subject to rollover risk only if

R1b1 > (1 + β)(y− yd). (1)

Note that a rollover crisis is equivalent to setting the borrowing limit to zero, a convention
we will adopt to simplify the exposition. We can express the problem in period t = 1 as

v1 (R1b1, sck) = max{vnd
1 (R1b1, sck) , vd

1},

where
vnd

1 (R1b1, sck) = max
b2≤B2(R1b1,sck)

y− R1b1 + b2 + β (y− R∗b2) .

The sunspot variable sck ∈ {0, 1} commands the Cole-Kehoe type of market sentiment.

8See Ayres et al. (2023).
9As in Aguiar et al. (2016), we assume the borrower does not keep the proceeds from the new bond

auction in case it defaults on the old debt.
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If sck = 0 and condition (1) holds, a rollover crisis happens and the borrowing limit
B2 (R1b1, sck) equals zero. Otherwise, B2 (R1b1, sck) = B̃2.10 In addition, note that the
condition for the rollover risk in (1) depends on R1, which gives rise to interest rate mul-
tiplicity. For a given b1, higher R1 makes a rollover crisis more likely. In turn, the higher
probability of a rollover crisis implies a higher R1.

We now turn to the borrower’s problem in t = 0:

v0(sc) = max
b1≤b1

y + b1 + β ∑
sck∈{0,1}

π(sck) v1

(
R1(b1, sc)b1, sck

)
,

where π(sck) denotes the probability distribution over the values that sck may take in
t = 1. We let p denote the probability of the bad sunspot, π(0) = p. The state variable
sc ∈ {0, 1} denotes the Calvo-type sunspot. In case there are multiple interest rates for
a given b1 such that lenders receive an expected return equal to R∗, we use the sunspot
variable sc as a device to select the interest rate. As in Ayres et al. (2023), we will focus on
two extreme cases. In the bad sunspot state, sc = 0, R1 takes the highest possible value. In
the good sunspot state, sc = 1, R1 takes the lowest possible value. Lemma 1 characterizes
all pairs (b1, R1) such that lenders receive return R∗ in expectation.

Lemma 1 The pairs (b1, R1) in which lenders receive an expected return equal to R∗ given the
borrower’s optimal borrowing and default strategies are:

(i) b1 ≤ (1+β)(y−yd)
R∗ ≡ B1 and R1 = R∗.

(ii) B1 ≡
(1+β)(y−yd)(1−p)

R∗ ≤ b1 ≤ (1− p)(y− yd)
(

1
R∗ +

1
(R∗)2

)
≡ B1 and R1 = R∗

1−p .

Proof Recall that the borrower will default in period t = 1 if R1b1 > (1 + β)(y − yd).
Because there are two possible values for the interest rate, R∗ and R∗/(1− p), we have two
debt thresholds that limit the repayment decision in the case of low and high interest
rates:

b1 ≤
(1 + β)(y− yd)

R∗
≡ B1

b1 ≤
(1 + β)(y− yd)(1− p)

R∗
≡ B1.

Finally, we need to find a debt threshold that makes the borrower indifferent between

10Note that the optimal strategy for the borrower in this simple case is to set b2 = B2 (R1b1, sck).
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repaying and defaulting when markets are open in period t = 1. The condition is

vd
1 = (1 + β)yd = y− R∗

1− p
b1 + b2 + β max{y− R2b2, yd}.

Under risk neutrality, assuming the borrower is impatient enough, the optimal borrowing
in that period is b∗2 = y−yd

R∗ . Plugging this value into the indifference condition yields the
following upper debt threshold:

b1 = (1− p)(y− yd)
(1 + R∗

R∗2
)
≡ B1.

For any debt level smaller than B1, the borrower repays even if lenders do not roll over the
debt. Hence, the interest rate is unique and equal to the risk-free rate. For a level of bor-
rowing between B1 and B1, however, multiple interest rates arise. It is noteworthy that,
in this case, it is the rollover risk in period t = 1, rather than the income shock, that drives
the multiplicity of the interest rate. In other words, for a given b1 ∈

[
B1, B1

]
, a high or

low interest rate R1 determines whether or not the borrower finds itself in a Cole-Kehoe
type of crisis zone. Finally, if the debt level is sufficiently high, above B1, then the interest
rate is again unique and equal to the high rate R∗

1−p . At such debt levels, the borrower is
in the crisis zone unconditionally and defaults in the event of a bad sck sunspot even if
interest rates were set to R∗.

The borrower observes sc before the bond auction and internalizes how the interest rate
will vary with respect to the amount of debt it chooses to issue. Therefore, when choosing
how much to borrow, he considers an interest rate schedule R1(b1, sc) as a mapping from
debt levels into unique interest rate values. Figure 1 presents a stylized illustration of
the two interest rate schedules the borrower may face. Panel 1(a) features the case of the
higher rate within the multiplicity interval, R1(b1, 0), while Panel 1(b) features the case of
the lower rate, R1(b1, 1).

In Appendix A, we extend Lemma 1 to the case of a risk-averse borrower. Risk aversion
further enhances the interest rate multiplicity, but it is no longer possible to find closed-
form solutions for all debt thresholds. In addition, while the present three-period model
mainly serves to illustrate our mechanism, in Appendix A.2 we also present a numerical
example where we assume reasonable parameter values and plot the resulting interest
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R1

b1

R∗

R∗
1−p

B1 B1 B1

(a) High interest rate schedule R1(b1, 0)

R1

b1

R∗

R∗
1−p

B1 B1 B1

(b) Low interest rate schedule R1(b1, 1)

Figure 1: Stylized illustration of the interest rate schedules

rate schedules and policy functions. In Section 3, we extend the model to an infinite
horizon and show that the rollover multiplicity is quantitatively significant.

3 Infinite-horizon model

In this section, we develop an infinite-horizon model to study the interaction between
interest rate multiplicity and rollover risk.

3.1 Economic environment

Consider a small open economy with a benevolent sovereign that borrows internation-
ally from competitive lenders and receives a stochastic endowment. Time is discrete and
indexed by t = 0, 1, 2, .... Markets are incomplete, and the only asset available for trad-
ing is the one-period non-contingent bond. The risk-free gross interest rate is R∗. The
representative household has preferences given by the expected utility of the form

E0

∞

∑
t=0

βtu(ct), (2)

where we assume the function u(·) is strictly increasing, concave, and twice continuously
differentiable. The discount factor is given by β ∈ (0, 1).
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Income process The economy’s income is affected by stochastic endowment growth
realizations and evolves according to

Yt = gtYt−1, (3)

where gt denotes the growth shock. The growth rate can take two values, gL and gH, with
gH > gL. It follows a Markov process with the transition probability matrix given by

Π =

[
πL 1− πL

1− πH πH

]
, (4)

where Pr(gt+1 = gL|gt = gL) = πL and Pr(gt+1 = gH|gt = gH) = πH. We model the
income shock process as growth regimes following Ayres et al. (2018), who show that a
bimodal income process generates Calvo-style interest rate multiplicity.11 That said, our
main quantitative result in Section 3.3 is obtained with a variant of the model with no
income shocks whatsoever.

Timing The timing assumptions are the same as in Section 2. The borrower chooses
whether or not to default on the debt from the previous period after the new debt issuance
(Cole and Kehoe, 2000). Similar to Calvo (1988), when the bond auction takes place, the
borrower moves first by committing to the amount of revenue it wishes to raise from
bond markets in the current period, b. Lenders move next and set the gross interest rate
R. Shocks are observed at the beginning of the period.

States The state variables are {A, Y, s}. A = RB denotes the total debt service to be
paid in the current period, Y is the current income, and s = {sc, sck} is a vector of sunspot
realizations corresponding to the interest rate multiplicity and rollover risk, respectively.

Recursive problem The value function of the government involves a choice of whether
or not to default:

V(A, Y, s) = max
d∈{0,1}

{
(1− d)Vnd(a, Y, s) + dVd(Y, s)

}
.

11It is also possible for the model to feature a transitory shock, but its variance cannot be too large.
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The value associated with repayment is

Vnd(A, Y, s) = max
B′≤B(A,Y,s)

{
u(C) + β ∑

y′
∑
s′

Π(y′|y)p(s′|s)V
(

B′R(B′, Y, s), y′, s′
)}

subject to
C = Y− A + B′.

The value associated with default is

Vd(Y, s) = u
(

Y(1− φ)
)
+ β ∑

y′
∑
s′

Π(y′|y)p(s′|s)
{

θV
(

0, y′, s′
)
+ (1− θ)Vd

(
y′, s′

)}
,

where φ represents the fraction of income lost upon default. We assume that, following
a default, the borrower has probability θ of being readmitted to capital markets in each
period and the recovery rate of defaulted debt is zero.

As in Section 2, the borrowing limit B (A, Y, s) equals zero whenever sck = 0, and the
lack of new borrowing pushes the country to default. That happens when the following
condition is satisfied:

u(Y− A) + β ∑
y′

∑
s′

Π(y′|y)p(s′|s)V
(

0, y′, s′
)
≤ Vd(Y, s).

Definition 2 formally defines an equilibrium in this economy.

Definition 2 A Markov perfect equilibrium for this economy consists of the government value
functions V(A, Y, s), Vnd(A, Y, s), Vd(Y, s); policy functions B′(A, Y, s) and d(A, Y, s); the
interest rate schedule R(B′, Y, s) and the borrowing limit function B (A, Y, s) such that:

1. Policy function d(A, Y, s) solves the government’s default-repayment problem.

2. Policy functions B′(A, Y, s) solve the government’s consumption-saving problem.

3. Interest rate schedules R(B′, Y, s) and borrowing limit functions B (A, Y, s) are such that
international lenders receive an expected return equal to R∗.

3.2 Quantification of the model

In this section, we parameterize our model in order to evaluate its performance quanti-
tatively. We do not conduct an independent calibration of the structural parameters, but
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instead we adopt them directly from Aguiar et al. (2022) and use them for all variants
of our model presented in the following sections. The parameter values are as follows.
The risk-free rate r is set to 0.01, the risk aversion γ is 2, the discount factor β is 0.8, the
income loss in default φ is 0.03, and the probability of re-entry following a default θ is
0.125. These parameter values replicate the typical behavior of the Mexican government
in terms of its borrowing and defaulting decisions.

To estimate the Markov-switching process for growth shocks, we use Mexico’s GDP data
for the period 1980-2021. We use the filter in Kim (1994) and estimate the parameters by
maximum likelihood estimation. The resulting parameter estimates are as follows. The
high and low regime growth rates are gh = 1.02 and gl = 0.96, while the persistence of
high and low regimes is πH = 0.8 and πL = 0.3, respectively.

3.3 No growth shocks

As a first step, we evaluate the model with no growth regimes (and thus, no fundamental
shocks whatsoever). Income is deterministic and equal to 1 in every period. Hence, in this
variant of the model, rollover risk is the sole driver of defaults and a potential interest
rate multiplicity. We start with 0.1 as the initial probability of the bad Calvo sunspot
realization (sc = 0), and we vary the probability of the Cole-Kehoe sunspot to illustrate
how the model works. Table 1 presents the statistics from a simulated ergodic distribution
for three different probabilities of a bad Cole-Kehoe sunspot (sck = 0). As is evident, the
model features starkly different types of behavior for seemingly similar values of this
parameter. When the probability is about 5.6% or lower, the agent borrows on the higher
interest rate schedule and defaults every time a rollover crisis occurs. As a result, the
average spread is roughly equal to the probability of a bad Cole-Kehoe sunspot, while the
variance of the spread is zero. On the other hand, for a probability of about 5.8% or higher,
the agent borrows on the lower interest rate schedule and reduces debt every time the
Calvo sunspot switches to bad in order to avoid the region of multiplicity. As a result, no
defaults occur on the equilibrium path and the bond spread is exactly zero. In between the
two extremes, there is an interval of the bad Cole-Kehoe sunspot probabilities around the
value of 5.7% where an interesting action occurs. In this case, the agent initially borrows
on the lower interest rate schedule but then increases the debt and jumps to the higher
rate when the Calvo sunspot switches to bad (a “slow-moving debt crisis"). The borrower
remains there until a Cole-Kehoe-type rollover crisis forces him into default. It should
be emphasized that while the interval of sunspot probabilities for which the interesting
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behavior occurs is quite narrow, it is so because the model does not feature any other
sources of uncertainty. Section 3.4 shows that this interval widens considerably when
realistic income shocks are introduced. It is also noteworthy that the average debt-to-
income ratio in this case, an untargeted moment, comes out exactly equal to its empirical
counterpart of 66%, as reported by Aguiar et al. (2022) (for quarterly data).

Table 1: Simulated results with no growth regimes

P(sck = 0) 0.056 0.057 0.058

E(d/Y) 18.2 16.5 13.1
E(s) 6.0 4.4 0.0
σ(s) 0.0 2.7 0.0
ρ(s,TB) 0.0 −0.59 0.0

Note: d=debt, Y=income, s=spread, TB=trade balance (relative to income),
sck = 0 denotes a bad Cole-Kehoe-type sunspot realization.

Figure 2(a) plots the interest rate schedule in the intermediate case of P(sck = 0) = 0.057.
The clear multiplicity interval confirms our analytical result from Section 2, which shows
that the Calvo action space can combine with rollover crises to generate overlapping in-
terest rate schedules with no income shocks. The graph also describes the dynamics of the
borrower’s decisions in this model. As the agent accumulates debt starting from zero, he
moves along the risk-free interest rate toward the points labeled “A" and “B." The former
is chosen if the Calvo sunspot realization is initially bad, whereas the latter is eventually
selected when the realization switches to good. Once the borrower lands at point B, he
will not retreat to point A upon another bad Calvo sunspot, but instead will borrow all
the way to point C and incur an interest rate spread of 6%. With no additional friction or
shocks in the model, the agent stays at point C until a Cole-Kehoe rollover crisis occurs,
in which case he defaults.12 Appendix B provides further analysis of this behavior by
examining the entire policy functions corresponding to each column of Table 1.

Figure 2(a) also features point D which we refer to as a policy intervention. Suppose that a
lender of last resort unexpectedly steps in and eliminates the possibility of a rollover crisis
for one period.13 In such case, the interest rate spread drops to zero in that given period
while the borrower increases the face value of the debt slightly to keep the debt obligation

12As Section 3.4 shows, the full version of this model with stochastic growth regimes also features en-
dogenous debt reductions.

13In the case of a permanent elimination of a rollover crisis, the model becomes degenerate as the impa-
tient government borrows up to the unique debt limit and never defaults.
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constant. The effects of such an intervention, reminiscent of the events at the height of the
European debt crisis in the summer of 2012, are specific to models with the Cole-Kehoe-
type rollover crises. If the intervention were instead focused on temporarily eliminating
the possibility of a bad Calvo sunspot, it could prevent the initial spread buildup, but it
would have no ability to bring it down. This shows that our model can simultaneously
generate features of the initial (slow-moving) and later (fast-moving) stages of the Euro-
pean debt crisis, and highlights the distinct policy implications at these stages.
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An interesting aspect of our model is that the interval of Cole-Kehoe sunspot probabilities
that generates these dynamics is the same for any Calvo sunspot probability parameter
that we choose. However, the implications for the resulting simulated moments are quite
different as we vary the likelihood of a Calvo-style crisis. Panels 2(b) and 2(c) of Figure
2 explore these comparative statics by plotting the basic moments of the bond spread
and debt for a range of values that this parameter can take. We find that the average
spread and average debt ratio are both monotonically increasing in the probability of
the bad Calvo sunspot. The intuition is simple: as switching to the higher interest rate
schedule becomes more likely, the borrower spends less time at point B of Figure 2(a),
characterized by lower debt and a spread of zero, and more time at point C, with high
debt and a positive spread. On the other hand, the measured volatility of the spread
is non-monotonic, initially rising sharply from zero and then falling back gradually. The
intuition is straightforward: if a Calvo-style crisis is very unlikely or if it happens too
often, the borrower will end up spending a disproportionate amount of time on the lower
or upper interest rate schedule, respectively. Hence, there exists an intermediate value
for the bad Calvo sunspot probability that balances the average time spent on the two
parts of the schedule and maximizes the overall bond spread volatility. For the present
parameterization, we find that the standard deviation of the bond spread peaks at around
3% for the bad Calvo sunspot probability of around 5%.

3.4 Quantitative results with growth regimes

We now evaluate our mechanism in a model with income shocks. As specified in Sec-
tion 3.2, the parameters of the stochastic growth rate are based on estimating a Markov-
switching process for Mexico. Table 2 presents the simulated results across four variants
of our model. To offer a meaningful comparison across the different variants of the model,
we adjust the sunspot probabilities so that the model exhibits a similar average debt ratio.
For completeness, we also report the results of a model without interest rate multiplicity
or rollover risk. In that case, there is no free parameter and debt becomes a non-targeted
object averaging around twice the level in the baseline, while spreads are essentially zero
for reasons similar to what Aguiar and Gopinath (2006) describe.

For our baseline model that combines interest rate multiplicity with rollover risk, we
fix the Calvo sunspot probability at 10% and we use a Cole-Kehoe sunspot probability
of 4.3%, which yields an average debt level of close to 16%. For the pure Calvo and
pure Cole-Kehoe variants of the model, we adjust their respective probabilities of a bad
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sunspot realization upward so that the average debt ratios in the simulations are similar.14

Table 2: Simulated results in the quantitative model

Stat Both Only Calvo Only C-K None

P(sc = 1) 0.1 0.275 0.0 0.0
P(sck = 1) 0.043 0.0 0.055 0.0

E(d/Y) 16.1% 16.1% 17.9% 30.5%
E(s) 4.0% 0.0% 5.9% 0.0%
σ(s) 1.5% 0.0% 0.0% 0.0%
ρ(TB,Y) −0.22 −0.13 −1.0 −0.68
ρ(s,Y) 0.02 0.0 0.0 0.0
ρ(s,TB) −0.66 0.0 0.0 0.0

Note: d=debt, Y=income, s=spread, TB=trade balance (relative to income), sck = 0 and
sc = 0 denote a bad Cole-Kehoe-type and Calvo-type sunspot realization, respectively.

As Table 2 shows, our baseline model with multiplicity and rollover risk generates a si-
multaneously high average and high volatility of the bond spread. Similar to the case with
no fundamental shocks described in Section 3.3, a bad Cole-Kehoe sunspot is needed to
trigger a run on the debt and default. However, in this model it is a high growth regime
realization that propels the government to accumulate debt and enter the crisis zone un-
der relatively high spreads. By contrast, a bad realization of the Calvo sunspot causes the
opposite reaction: the debt (and spread) is reduced, and the government will repay even
if markets do not open the next period. As such, our baseline model with income shocks
generates interesting dynamics of debt and spreads in both directions (accumulation and
reduction).

By contrast, in the pure Calvo variant of the model, a high probability of the bad sunspot
is required to match the desired level of debt. At that probability, however, the borrower
does not default or enter the multiplicity region on the equilibrium path resulting in a zero
spread. In the pure Cole and Kehoe variant of the model, on the other hand, a level of debt
close to the targeted one is attained for the probability of a bad sunspot of 5.5%, which
results in roughly the same average spread (essentially, the government always enters the
crisis zone and defaults if and only if the markets close). However, the consequence of
this behavior is that the volatility of the spread is zero (Aguiar et al., 2022).

14Because of the typical knife-edge behavior of such models, it is not necessarily possible to have all three
variants deliver exactly the same level of debt. Hence, we seek parameter values that bring debt levels as
close to each other as possible.
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We now turn to the comparative statics analysis for our baseline model with respect to the
probability of a bad Cole-Kehoe sunspot. Panels 3(a)-3(b) of Figure 3 plot the three mo-
ments of interest for the sunspot probabilities ranging up to 6%. The main thing to notice
is that, in contrast to the variant of our baseline model with no income shocks (Section
3.3), the range of Cole-Kehoe sunspot probabilities for which we attain interesting debt
dynamics is substantially wider. For the interval of such probabilities up to roughly 4.5%,
the model generates simultaneously a high mean and high variance of the bond spread
(increasing in the probability) with a realistic average debt ratio. Above that interval, the
behavior of the borrower becomes less interesting; the government stays permanently
outside the rollover crisis zone, and no defaults occur.

Next, we focus on the pure Calvo variant of the model to analyze its ability to generate
interesting debt dynamics for a wider range of parameters. Panels 3(c)-3(d) of Figure 3
present comparative statics with respect to the probability of a bad Calvo sunspot, the
only non-fundamental variable in that variant. As the plots show, defaults do occur on
equilibrium path, and the model can generate a non-zero spread for sunspot probabilities
lower than 7.5%, which corresponds to much higher debt-output ratios (23% and above).
It is notable, however, that both the average and standard deviation of the bond spread
are at least 50% smaller than in our baseline model.

Finally, Panels 3(e)-3(f) of Figure 3 present comparative statics with respect to the bad
sunspot probability in the pure Cole-Kehoe variant of the model. The government here
behaves as expected: for low enough probabilities of a bad sunspot, it borrows a lot and
always remains in the crisis zone, irrespective of the underlying growth regime. In all
these cases, however, the mean spread corresponds directly to the assumed probability of
a bad sunspot while the spread volatility is zero (unless a default has already occurred, the
equilibrium spread is always a constant). For a sunspot probability greater than roughly
6%, the borrower reduces its debt sharply and stays outside of the crisis zone. As a result,
both the mean and standard deviation of the spread are zero.
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Figure 3: Comparative statics in the baseline model and two benchmarks: pure Calvo and
pure Cole-Kehoe

18



4 Conclusion

This paper contributes to the literature on self-fulfilling debt crises by introducing a sim-
ple model with interest rate multiplicity generated by belief-driven runs on government
debt. In turn, such runs are justified by a realization of high interest rates that by itself
results from pessimistic beliefs. The main achievement of the model is to show that one
can easily generate rich dynamics of sovereign debt and the interest rate spread by com-
bining the notions of slow- and fast-moving debt crises without any underlying shocks to
fundamentals. Through a combination of simplicity and quantitative rigor, the model al-
lows us to simultaneously think about the slow- and fast-moving stages of the European
debt crisis of 2008-2012.
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Appendices (for online publication)

A Derivations for the three-period model

In this appendix, we show that our basic three-period model result extends to the case of
a risk-averse borrower. We illustrate both cases with a numerical example.

A.1 Risk aversion

We now derive the corresponding thresholds for the case of a risk-averse borrower. We
assume a CRRA utility function of the form u(c) = c1−γ

1−γ , and we analyze the problem
backward. Similar to the case of risk neutrality, in period t = 2 the agent repays if y −
b2R∗ ≥ yd. In period t = 1, if markets do not roll over the debt, the borrower will default
if

vd
1 = (1 + β)u(yd) > v1(R1b1, s1 = 1) = u(y− R1b1) + βu(y)

If γ > 1, this condition boils down to

R1b1 > y−
(
(1 + β)(yd)1−γ

) 1
1−γ

,

which shows that the default decision depends on the level of interest rate. Consequently,
we have the two debt thresholds that limit the repayment decision for the case of low and
high interest rates:

b1 ≤
1

R∗
[
y−

(
(1 + β)(yd)1−γ − βy1−γ

) 1
1−γ
]
≡ B1

b1 ≤
1− p

R∗
[
y−

(
(1 + β)(yd)1−γ − βy1−γ

) 1
1−γ
]
≡ B1.

Next, to find the debt threshold that makes the borrower indifferent between repaying
and defaulting when markets are open in t = 1, we need to find optimal borrowing b2.
Under risk aversion, this entails solving the problem

v1(R1b1, s1 = 0) = max
b2

u(y− R1b1 + b2) + βu(y− R∗b2).

The interior solution to this problem is b∗2 = (βR∗)−1/γy−(y−R1b1)
1+(βR∗)−1/γR∗ , while a corner implies

b∗2 = y−yd

R∗ . To find threshold B1, we need to plug this into the indifference condition in
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period t = 1,

vd
1 = (1 + β)u(yd) = u(y− R∗

1− p
b1 + b∗2) + βu(y− R∗b∗2),

and solve for b1. Under risk aversion, this solution cannot be obtained analytically. The
results in Section A.2 present our numerical solution to this problem.

A.2 Numerical example

In this subsection, we provide a simple numerical example to show that the interest rate
multiplicity characterized so far is realistic. We also extend the analysis to the case of a
risk-averse borrower and show that the result becomes even stronger. The exact deriva-
tions for this case are presented in Appendix A.1.

Consider the case of a risk-averse borrower with a CRRA utility function of the form
u(c) = c1−γ

1−γ . We assume the following, fairly realistic parameterization: β = 0.7, γ = 3,
y = 1, yd = 0.95, p = 0.8, R = 1.03. Figure 4 presents the interest rate schedules, as well as
the optimal debt policy for the risk-averse borrower. The solid blue line depicts the lower
(risk-free) interest rate, while the dashed red and dotted blue lines represent the upper
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Figure 4: Interest rate schedules and optimal policy
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(risky) interest rate for the case of a risk-averse and risk-neutral borrower, respectively. It
is immediate to notice that including risk aversion causes the interest rate multiplicity to
almost double in size. The presence of this multiplicity also has real consequences for the
borrower’s actions. When the Calvo sunspot is bad, the government must reduce its debt
by around 20%, compared to the case of a good sunspot, to avoid the higher interest rate.

B Further illustrations for the infinite-horizon model

In this section, we provide further illustration of the government’s borrowing choices in
the model with no income shocks, corresponding to the three types of behavior presented
in Table 1. Panel 5(a) of Figure 5 shows the optimal next period debt choice (b′) as a
function of today’s debt (b), for the two possible realizations of the Calvo sunspot. As
the government accumulates debt from zero, it will ultimately stop at the 45 degree line,
with the exact amount depending on the current realization of the Calvo sunspot. If the
sunspot is bad, then the government will stop just outside of the interval of interest rate
multiplicity (corresponding to point A in Figure 2(a)). If the sunspot is good, the gov-
ernment will borrow more (progressing to point B), at which point another bad sunspot
realization will induce it to jump to a debt level of about 19% with no possibility of retreat.

Panel 5(b) of Figure 5 illustrates the case corresponding to the second column of Table 1,
which we refer to as “exposed." As the government accumulates debt from zero, none of
the lower segments of the policy functions actually cross the 45 degree line. This means
that regardless of the realization of the Calvo sunspot, the government will end up jump-
ing to a level of debt of around 18%, which is the region of the Cole-Kehoe-type crisis
zone. As a result, while the average bond spread is high, it does not exhibit any volatility
over time.

Finally, Panel 5(c) of Figure 5 illustrates the case corresponding to the last column of Table
1, which we refer to as “no default." In this variant, the interval of interest rate multiplic-
ity spans the range of debt where the policy functions are below the 45 degree line and,
as a result, the government pulls back. The points of intersection of the policy functions
with the 45 degree line lie completely outside of the region of multiplicity, and the gov-
ernment never enters the Cole-Kehoe crisis zone and never defaults. Consequently, the
equilibrium bond spread is always zero.
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